博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
曼哈顿距离与切比雪夫距离及其相互转化
阅读量:5251 次
发布时间:2019-06-14

本文共 784 字,大约阅读时间需要 2 分钟。

本文只讨论二维空间中的曼哈顿距离与切比雪夫距离

曼哈顿距离

定义

设平面空间内存在两点,它们的坐标为$(x1,y1)$,$(x2,y2)$

则$dis=|x1-x2|+|y1-y2|$

即两点横纵坐标差之和

煮个栗子

如图所示,图中$A,B$两点的曼哈顿距离为$AC+BC=4+3=7$

 

切比雪夫距离

定义

设平面空间内存在两点,它们的坐标为$(x1,y1)$,$(x2,y2)$

则$dis=max(|x1-x2|,|y1-y2|)$

即两点横纵坐标差的最大值

再煮个栗子

$dis=max(AC,BC)=AC=4$

 

两者之间的关系

两者的定义看上去好像毛线关系都没有,但实际上,这两种距离可以相互转化

我们考虑最简单的情况,在一个二维坐标系中,设原点为$(0,0)$

如果用曼哈顿距离表示,则与原点距离为$1$的点会构成一个边长为$\sqrt{2}$的正方形

 

 

如果用切比雪夫距离表示,则与原点距离为$1$的点会构成一个边长为$2$的正方形

 

 

仔细对比这两个图形,我们会发现这两个图形长得差不多,他们应该可以通过某种变换互相转化。

事实上,

将一个点$(x,y)$的坐标变为$(x+y,x-y)$后,原坐标系中的曼哈顿距离 $=$ 新坐标系中的切比雪夫距离

将一个点$(x,y)$的坐标变为$(\frac{x+y}{2},\frac{x-y}{2})$ 后,原坐标系中的切比雪夫距离 $=$ 新坐标系中的曼哈顿距离

 

用处

切比雪夫距离在计算的时候需要取$max$,往往不是很好优化,对于一个点,计算其他点到该的距离的复杂度为$O(n)$

而曼哈顿距离只有求和以及取绝对值两种运算,我们把坐标排序后可以去掉绝对值的影响,进而用前缀和优化,可以把复杂度降为$O(1)$

 

 

 

转载于:https://www.cnblogs.com/zwfymqz/p/8253530.html

你可能感兴趣的文章
linux sed命令
查看>>
html标签的嵌套规则
查看>>
[Source] Machine Learning Gathering/Surveys
查看>>
HTML <select> 标签
查看>>
类加载机制
查看>>
tju 1782. The jackpot
查看>>
HTML5与CSS3基础(五)
查看>>
WinDbg调试C#技巧,解决CPU过高、死锁、内存爆满
查看>>
linux脚本中有source相关命令时的注意事项
查看>>
css样式表中的样式覆盖顺序
查看>>
湖南多校对抗赛(2015.03.28) H SG Value
查看>>
REST Web 服务(二)----JAX-RS 介绍
查看>>
hdu1255扫描线计算覆盖两次面积
查看>>
hdu1565 用搜索代替枚举找可能状态或者轮廓线解(较优),参考poj2411
查看>>
bzoj3224 splay板子
查看>>
程序存储问题
查看>>
Mac版OBS设置详解
查看>>
优雅地书写回调——Promise
查看>>
android主流开源库
查看>>
AX 2009 Grid控件下多选行
查看>>